Letters

Observations of 8-amu/Unit Charge Ion Cyclotron Whistlers

DONALD A. GURNETT AND PAUL RODRIGUEZ

Department of Physics and Astronomy
University of Iowa, Iowa City, Iowa 52240

A new ion cyclotron whistler associated with ions having a mass to charge ratio of 8-amu/unit charge has been found in the Injun 5 satellite very-low-frequency (VLF) radio noise data. This 8-amu/unit charge ion cyclotron whistler is the third type of ion cyclotron whistler found in satellite VLF data; the previous types were the proton whistler, which was first reported by Smith et al. [1964] and explained by Gurnett et al. [1965], and the helium whistler, which was first reported by Barrington et al. [1966]. This observation of an 8-amu/unit charge ion cyclotron whistler confirms earlier measurements by Hoffman [1967], who first identified the presence of ionospheric ions with mass to charge ratios of 8-amu/unit charge by using a mass spectrometer on the Explorer 31 satellite. The corresponding ion species is thought to be either O+(a doubly charged mass 16 ion) or He+(a singly charged mass 8 molecule [Hoffman, 1967]). At the present time the identity of this ion has not been clearly established (see discussions by Banks and McGowan [1968], Ferguson and Fehsenfeld [1969], Banks and McGowan [1969a], Gerado and Gusinow [1969], and Banks and McGowan [1969b]).

An example of an 8-amu/unit charge ion cyclotron whistler observed with the Injun 5 VLF experiment (see Gurnett et al. [1969] for a description of this experiment) is shown in Figure 1. The ion species corresponding to each of the ion cyclotron whistlers shown can be determined from the asymptotic frequency of the whistler signal (the ion gyrofrequency), which is inversely proportional to the mass to charge ratio of the corresponding ion species (see Gurnett et al. [1965]). The asymptotic frequency of the 8-amu/unit charge whistler in Figure 1 was determined to be 1/8 ± 3% of the proton gyrofrequency, thereby identifying the charge to mass ratio as an 8-amu/unit charge.

The relative abundances of each ion species can be obtained from measurements of the crossover frequency, the frequency at which the ion cyclotron whistler signal meets the short fractional hop whistler signal (see Gurnett et al. [1965], Shawhan and Gurnett [1966], and McEwen and Barrington [1967]). Considering the uncertainties in measuring the crossover frequencies in Figure 1, the fractional concentrations, a, have been determined within the following limits

\[
\begin{align*}
0.76 > \alpha(H^+) > 0.56 \\
0.37 > \alpha(He^+) > 0.16 \\
0.14 > \alpha(O^+) > 0.03 \\
0.03 > \alpha(m/q = 8) > 0.0
\end{align*}
\]

The large uncertainty in the fractional concentration of the 8-amu/unit charge ions (0 to 3%) arises because the difference between the crossover frequency and the ion gyrofrequency of the 8-amu/unit charge whistler is very small (∼5 Hz) and difficult to determine with good accuracy.

At the present time, after surveying data from several hundred passes, 8-amu/unit charge whistlers have been observed on only six passes, much less frequently than either proton whistlers or helium whistlers. This decreased occurrence may be due in part to the increased background noise and decreased receiver sensitivity at these extremely low frequencies. The satellite coordinates at which 8-amu/unit charge whistlers were observed on each pass are given in Table 1. In all cases the fractional concentration of the 8-amu/unit charge ions was a few percent or less.

Copyright © 1970 by the American Geophysical Union.
Fig. 1. Frequency-time spectrogram of a short fractional hop electron whistler followed, in order of decreasing frequency, by (A) a proton whistler at about 432 Hz, (B) a helium whistler at about 108 Hz, and (C) an 8-amu/unit charge whistler at about 54 Hz. Altitude is 1268 km, invariant latitude is 46.7°, and local time is 0.34 hr.

<table>
<thead>
<tr>
<th>Date</th>
<th>Universal time (hr min : sec)</th>
<th>Altitude (km)</th>
<th>Invariant latitude (degrees)</th>
<th>Local time, (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2, 1969</td>
<td>0549 : 38</td>
<td>1425</td>
<td>50.1</td>
<td>1.20</td>
</tr>
<tr>
<td>August 11, 1969</td>
<td>1150 : 27</td>
<td>2130</td>
<td>41.2</td>
<td>6.10</td>
</tr>
<tr>
<td>August 15, 1969</td>
<td>1234 : 52</td>
<td>1814</td>
<td>48.0</td>
<td>5.89</td>
</tr>
<tr>
<td>August 24, 1969</td>
<td>0939 : 28</td>
<td>1450</td>
<td>53.7</td>
<td>4.95</td>
</tr>
<tr>
<td>August 24, 1969</td>
<td>0941 : 24</td>
<td>1346</td>
<td>58.6</td>
<td>5.05</td>
</tr>
<tr>
<td>September 2, 1969</td>
<td>0836 : 06</td>
<td>1373</td>
<td>42.7</td>
<td>3.70</td>
</tr>
<tr>
<td>September 2, 1969</td>
<td>0834 : 03</td>
<td>1337</td>
<td>37.4</td>
<td>3.30</td>
</tr>
</tbody>
</table>

Acknowledgment. This research was supported in part by the National Aeronautics and Space Administration under contracts NAS5-10625, NAS1-8141, NAS1-8144(f), NAS1-8150(f), and NGR-16-001-043; and by the Office of Naval Research under contract Nonr 1509(06).

REFERENCES

Gurnett, D. A., G. William Pfeiffer, Roger R. Anderson, Stephen R. Mosier, and David P. Cauffman, Initial observations of VLF electric
and magnetic fields with the Injun 5 satellite,
Gurnett, D. A., S. D. Shawhan, N. M. Brice, and
Hoffman, J. H., Composition measurements of
the topside ionosphere, *Science*, 155, 322–324,
1967.
McEwen, D. J., and R. E. Barrington, Ion com-
position below 3000 km derived from ion
whistler observations, *Space Res.*, 7, North-
Holland Publishing Co., Amsterdam, 396–404,
1967.

Shawhan, S. D., and D. A. Gurnett, Fractional
concentration of hydrogen ions in the iono-
sphere from VLF proton whistler measurements,
Smith, R. L., N. M. Brice, J. Katsyfrakis, D. A.
Gurnett, S. D. Shawhan, J. S. Belrose, and
R. E. Barrington, An ion gyrofrequency phe-
nomena observed in satellites, *Nature*, 204, 274–
275, 1964.

(Received January 5, 1970.)