ENAs and their phase relations to SKR emissions at Saturn

J. F. Carbary,¹ D. G. Mitchell,¹ P. C. Brandt,¹ S. M. Krimigis,¹ and D. A. Gurnett²

Received 8 June 2011; revised 19 July 2011; accepted 20 July 2011; published 24 August 2011.

Cassini orbits during days 200–366 in 2004 afforded the opportunity to continuously observe energetic neutral atom (ENA) emissions from long range (~50 Rs, 1 Rs = 60268 km) on Saturn’s dawn side. Images of energetic neutral hydrogen (25–55 keV) and oxygen (90–160 keV) were projected onto the noon–midnight plane, corrected for travel time from Saturn, averaged into half hour time bins and finally averaged into a 60 × 40 Rs spatial bin. The time profiles of these bin averages were then subjected to a Lomb periodogram analysis. The H periodogram exhibits a weak periodicity (SNR = 9.1) with a major peak at 10.78 hours and several minor peaks. The O periodogram displays strong periodicities (SNR = 36.2) with a major peak at 10.78 hours and a various secondary peaks. A cross correlation of the SKR signal with the ENA signals reveals that the H signal leads the SKR by 1.46 ± 0.08 hours, while the O signal leads the SKR by 2.21 ± 0.14 hours. Citation: Carbary, J. F., D. G. Mitchell, P. C. Brandt, S. M. Krimigis, and D. A. Gurnett (2011), ENA periodicities and their phase relations to SKR emissions at Saturn, Geophys. Res. Lett., 38, L16106, doi:10.1029/2011GL048418.

1. Introduction

2. Data and Data Processing

¹Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA.
²Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA.

Copyright 2011 by the American Geophysical Union.
0094-8276/11/2011GL048418
observation (only Cassini ranges greater than 30 R_S were employed). The time marks of the INCA images were corrected for the travel times of each species of particle using the geometric means of the energy ranges. To improve statistics, the ENA fluxes from individual INCA images were then time-averaged on a pixel-by-pixel basis into half-hour bins. The average pointing was next used to project the fluxes onto the noon-midnight plane of Saturn by finding the pierce points of the pixels on this plane. Time profiles of the ENA fluxes were finally calculated by averaging all pixels falling within $60 \times 40 R_S$ boxes centered on Saturn. Figure 1 (right) illustrate these averaging boxes and how they encompass the ENA emissions coming from Saturn’s magnetosphere. A complete discussion of the projection geometry and box averaging has been given before [Carbary et al., 2008a]. Average projected range errors of $\sim 0.8\%$ arise from assuming all the ENA fluxes originate at Saturn, while particle speed errors of $\sim 1\%$–2% arise from using the geometric mean of ENA energies rather than an energy based on the ENA spectrum, which is any case is imperfectly known [Carbary et al., 2008c]. Adding these uncertainties in quadrature amounts to travel times having errors of $\sim 2.3\%$ for hydrogen ENA and $\sim 1.4\%$ for oxygen ENA.

[8] The time profile of SKR emissions is obtained from the electric field strengths observed by the Radio Plasma Wave Science (RPWS) instrument on Cassini [Gurnett et al., 2004]. The field vectors were integrated over the kilometric band from 100 to 400 kHz and also averaged to half hour time resolution for compatibility with the ENA signal. The SKR data were not adjusted for travel time because the radio waves move at the speed of light and travel times are negligible.

[9] Figure 2 (top and middle) compares box-averaged time profiles from hydrogen and oxygen ENA with the time profile of SKR (Figure 2, bottom). These profiles represent a subset of 31 days out of the 167 days using in the full study. The ENA profiles look remarkably similar to each other although they differ in magnitude. At first glance, the SKR profile seems dissimilar to those of the ENA, although more scrutiny reveals a similarity between the ENA and radio signals. In particular, the “bursts” on days 324 and 338 appear in all the profiles. Also, note that numerous gaps appear in the ENA profiles. These are generally caused by spacecraft maneuvers that shift the field of view away from Saturn. The SKR record contains many fewer gaps. Finally, large-scale variations in the ENA occur at irregular time intervals of 5–10 days. These variations are probably caused by solar wind disturbances acting on the magnetosphere. While important, such disturbances are not the subject of this investigation and will be discussed in another paper.

3. ENA Periodicity

[10] Before conducting a formal cross correlation between the ENA and SKR signals, a Lomb periodogram analysis is
conducted to verify the ENA periods and show they are the same as that of the SKR. The establishment of phase relations between two signals requires that they share a common frequency.

[11] Figure 3 displays periodograms for the neutral H (Figure 3, top) and neutral O (Figure 3, bottom) and clearly demonstrates the principal periods of both signals are exactly those of the SKR at this time, namely, 10.78 hours [e.g., Gurnett et al., 2009]. The H signal appears weaker and noisier than the O signal; this has been recognized in previous examinations of the ENA spectra [Carbary et al., 2008a]. The periodograms also reveal secondary signals that have statistical significance but are not relevant to the correlations. The sources of these signals are unknown, but may be related to solar wind modulations known to affect the radio emissions [e.g., Zarka et al., 2007]. Alternately, they may be rotational signals unrelated to the SKR. A weak signal also appears at 10.61 hours in the oxygen periodogram, and this might represent the beginning of a dual periodicity in the ENA. At this epoch, however, the SKR signal is primarily that of the southern source with a period near 10.78 hours [Gurnett et al., 2009]. This 10.78 hour period is the principal correlative for the ENA and SKR signals.

4. Cross Correlation and Discussion

[12] Figure 4 presents the formal cross correlations between the ENA signals and the logarithm of the SKR signal, and shows how they differ from two random signals of the same resolution and duration. The linear cross correlation coefficient between the time profiles has been used; gaps in each signal were carefully accounted for and removed. For both species of ENA, the SKR signal lags the ENA signal. The peak cross correlation of the SKR is stronger for the oxygen ENA (\(\sim 0.56\)) than for the hydrogen ENA (\(\sim 0.45\)). The weaker H correlation strength probably results from the noisier hydrogen signal. The hydrogen ENA signal leads the SKR signal by 1.46 ± 0.08 hours, while the oxygen ENA leads the SKR by 2.21 ± 0.14 hours, where the uncertainties are those of the cross correlation peak. The differing lead times may have to do with the faster drift times for energetic oxygen ions compared to protons. Recall that the ENA is essentially a proxy for energetic ions that generate ENA through charge exchange.

[13] The ENA signals represent a global measure of magnetospheric activity, as might be expected from the ring current. The phase relations of both the hydrogen and oxygen ENA relative to SKR suggest that magnetospheric activity precedes radio activity, and by time periods of one to three hours. Some care should be exercised in accepting this interpretation, because the intensity of both the SKR and ENA signals varies with location, so the exact phasing might be biased by observer location. The ENA emissions appear to maximize in the midnight sector and move counter-clockwise around Saturn [Carbary et al., 2008c], while the SKR emissions are predominant in the morning to noon local time.
Figure 3. Lomb periodograms of (top) neutral hydrogen and (bottom) neutral oxygen. SNR refers to the signal-to-noise ratio of the peak emission to the average of the other peaks in the 5–15 hour window examined here.

Figure 4. Cross correlations between (top) hydrogen ENA and SKR and (middle) oxygen ENA and SKR. The cross correlation peaks are denoted with vertical dot-dash lines, while the main 10.78 period is indicated with dotted lines. (bottom) The cross correlation between two random signals having the same number of samples and time resolution as the ENA-SKR observations.
sectors [Lamy et al., 2008; Cecconi et al., 2009]. For the data used herein, the observer had a stationary location on the dawn flank of Saturn.

[14] The magnetospheric ENA activity precedes the radio activity in time, so one may infer that it generates or drives the radio activity. The following scenario may be envisioned. The ENA modulation results from a rotating source or "blob" that intensifies or originates near midnight, so a dawnside observer would first see an ENA enhancement on the nightside. This enhancement would then sweep eastwards to the dayside, activating the dawn-to-noon radio emissions as it does so. The different lead times of the hydrogen and oxygen relative to the SKR result from different ion drift speeds and/or different activation locations for the two species. Pressure gradients associated with the ENA blob would drive currents responsible for SKR emissions as well as magnetic field oscillations.

[15] A previous study of ENA-SKR interpreted their phase differences in terms of clocks having the same periods and being re-set by external effects [Carbary et al., 2010]. This earlier hypothesis may still have merit, although it was based on a limited number of case studies and using equatorial (rather than noon-midnight) projections. Spanning a longer time interval, the present study finds no evidence for re-setting of the ENA clocks relative to SKR.

5. Conclusions

[16] ENA emissions were observed from the Cassini spacecraft on the dawn side of Saturn for 167 days in 2004. After correction for travel time from Saturn and projection onto the noon-midnight plane, the ENA fluxes were averaged into half hour time bins and then into a 60 × 40 R_S spatial bin to generate a time profile of the emissions. Lomnitz spectra of both the hydrogen and oxygen ENA exhibit strong periodicities at the 10.78 period of the Saturn kilometric radiation (100–400 kHz) seen during the same interval. A cross correlation of the SKR signal with the ENA signals shows that the H signal leads the SKR by 1.4 ± 0.08 hours, while the O signal leads the SKR by 2.21 ± 0.14 hours. Because these magnetospheric ENA signals always lead the ionospheric SKR signal, one infers a magnetospheric driver, marked by the ENA source, that rotates from midnight through dawn to noon and triggers SKR emissions as it does.

[17] Acknowledgments. This research was supported in part by the NASA Office of Space Science under task order 003 of contract NAS5–97271 between NASA Goddard Space Flight Center and the Johns Hopkins University.

[18] The Editor wishes to acknowledge Anna DeJong and an anonymous reviewer for their assistance evaluating this paper.

References

P. C. Brandt, J. F. Carbary, S. M. Krimigis, and D. G. Mitchell, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd., Laurel, MD 20723-6099, USA. (james.carbary@jhuapl.edu)

D. A. Gurnett, Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242-1479, USA.